- In Young's double-slit experiment, the slits are separated by 0.28 mm and the screen is placed 1.4 m away. The distance between the central bright fringe and fourth bright fringe is measured to be 1.2 cm.
 Determine the wavelength of light used in the experiment.
 - **Sol.** Given, d = 0.28 mm = 0.28 \times 10⁻³ m, D = 1.4 m, y = 1.2 cm = 1.2 \times 10⁻² m, n = 4, λ = ? For constructive interference, distance between two fringes, y = $\frac{nD\lambda}{d}$ Thus, wavelength $\lambda = \frac{yd}{nD} = \frac{1.2 \times 10^{-2} \times 0.28 \times 10^{-3}}{4 \times 1.4} = 6 \times 10^{-7}$ m or λ = 600 nm